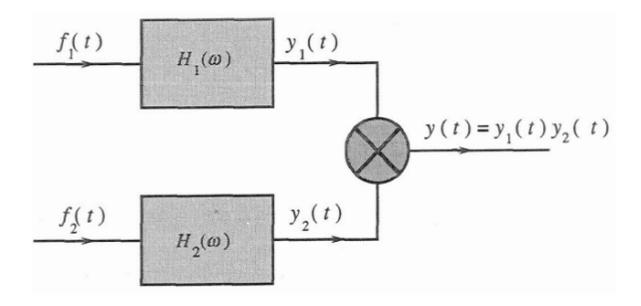

Sheet 7

1. A signal with a spectrum shown in the figure is ideally sampled. Sketch the spectrum of the sampled signal when $f_s=4 \text{KHz}$, can x(t) be recovered ? If so, how? Repeat with $f_s=8$ KHz and $f_s=10$ KHz. Comment on your results.

- 2. Fig. (a) And (b) shows Fourier spectra of signals $f_1(t)$ and $f_2(t)$. Determine the Nyquist sampling rates for the following signals.
 - a. $f_1(t)$
 - b. $f_2(t)$
 - c. $f_1(t)$. $f_2(t)$
 - d. $(f_1(t))^2$
 - e. $(f_1(t))^3$

(Hint: Use the frequency convolution and the width property of the convolution.)


- 3. Signals $f_1(t) = 10^4 rect(10^4 t)$ and $f_2(t) = \delta(t)$ are applied at the inputs of ideal lowpass filters $H_1(\omega) = rect(\frac{\omega}{40,000\pi})$ and $H_2(\omega) = rect(\frac{\omega}{20,000\pi})$. The outputs $y_1(t)$ and $y_2(t)$ of these filters are multiplied to obtain the signal $y(t) = y_1(t)y_2(t)$ as shown in Figure Q3.
 - a) Sketch $F_1(\omega)$ and $F_2(\omega)$.
 - b) Sketch $H_1(\omega)$ and $H_2(\omega)$.
 - c) Sketch $Y_1(\omega)$ and $Y_2(\omega)$.
 - d) Find the Nyquist sampling rate of $y_1(t)$, $y_2(t)$ and y(t).

Electronic Engineering Fundamentals

2st Year Communications

(Signal analysis) (2015-2016)

Good Luck